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Interpretation of X-ray Scattering Patterns due to Periodic Structural Fluctuations. I. 
The Case of Transverse Modulation of Positional Parameters in Primitive Lattices 
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This paper deals with transverse periodic fluctuations of atomic positions. The coherently scattered 
X-ray intensity is calculated for two types of modulating functions. 1. A rectangular wave: This type 
of modulation may be conceived for structures with domain-like antiparallel shifts of atomic positions 
(e.g. in antiferroelectics). 2. A triangular wave: Some type of micro-twinning can be described as a 
transverse triangular modulation of the structure. For these two types of lattice modulations the char- 
acteristic features of scattering patterns are discussed so as to determine the type of the modulating 
function and its parameters (wavelength, amplitude). These results are compared with those published 
by Korekawa [Theorie der Satellitenreflexe (1967). Habilitationschrift der Ludwig-Maximilian-Univer- 
sitfi, t Miinchen] for sinusoidal type modulations. 

Introduction 

On single-crystal X-ray photographs groups of re- 
flexions, which are called 'satellites', are sometimes 
observed close to the main reflexions. Often, the in- 
tensity of the satellite reflexions is weak enough to be 
neglected in a first approximation, and the structure 
may be described by a unit cell which is defined by the 
main reflexions only. Thus, with the satellites neglected 
an average picture of the structure is obtained. The 
real structure, however, is determined by both the 
main and the satellite reflexions. The real unit cell 
defined by the distance between main and satellite re- 
fexions is larger than the cell given by the main re- 
flexions only. The latter will be referred to as the sub- 
cell hereafter. A structure which gives rise to a scat- 
tering pattern of main and satellite reflexions can be 
conceived as being made up of subcells; their spatial 
arrangement is given by a periodic function, the 
'modulating function'. The size of the unit cell is 
given by the period M of the modulating function. A 
lattice which is defined in such a way is shown in Fig. 
l(a). In Fig. l(b) the amplitude of the modulating 
function has vanished to zero, leading to a structure 
called the 'idealized structure'. In this case the subcell 
has become the unit cell. 

In the example given in Fig. l(a) the spatial positions 
of subcells follow a transverse modulation function, 
which is periodic in only one dimension. This paper is 
restricted to this type of lattice modulation only. 
However, other types are conceivable: 

1. The positional parameters of subcells may be 
modulated in a longitudinal mode. 

2. The scattering factors, rather than the positional 
parameters, are affected by a periodic function, 
giving rise to density fluctuations. 

In the real case the modulated structure may be a 
combination of these fundamental types of modula- 

tions, and the modulation function may be periodic 
in more than one dimension. 

The phenomenon of satellite reflexions - known in 
light scattering for a long time - was first applied to 
problems of X-ray scattering by Dehlinger (1927) who 
described the line broadening of powder lines. A first 
theoretical approach was given by Kochend6rfer (1939) 
who used the concept of sinusoidal lattice modulations. 
Daniel & Lipson (1943, 1944) calculated the scattered 
amplitudes for the two types of lattice modulations: 
a sinusoidal modulation of scattering power and a 
sinusoidal modulation of spacing, which in our ter- 
minology is a longitudinal modulation of positional 
parameters. Hargreaves (1951) tried to introduce a 
square-wave modulation of positional parameters; 
however, because of the approximations used he ob- 
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Fig. 1. (a) A modulated structure given by a periodic shift 
function. (b) The corresponding structure without the modu- 
lation. 
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tained substantially the same result as for a sinusoidal 
modulation. He also proposed a model in which 
lamellae, modulated in a longitudinal mode, are se- 
parated by volumes of unchanged matrix. By this 
model he was able to obtain reasonable agreement 
between theory and experiment for the Cu-Ni-Fe 
alloys. Guinier (1955) proposed a model consisting of 
isolated, randomly distributed composition fluctua- 
tions. By the random character of the model the dif- 
fuse broadening of satellite peaks can be accounted 
for. De Fontaine (1966) studied the combined case of 
modulation of scattering power and of spacing. The 
modulation functions for the scattering power and for 
the positional parameters are represented by a Fourier 
series in his approach. He also proposed a model of a 
'quasi periodic modulated structure', in which the 
scattering power is modulated by a sine wave with the 
sine wave itself frequency modulated by a cosine wave 
of much longer period. The resulting scattering pattern 
consists of sharp Bragg peaks flanked by diffuse sa- 
tellite envelopes. Korekawa (1967) was the first to 
giv6 a systematic review on satellite theory and to 
discuss the 'pure' as well as the combined cases of 
modulation of scattering power and of positional par- 
ameters in both longitudinal and transverse modes. 
For modulation functions other than sinusoidal he 
also used the approach of Fourier series expansion 
which (except for the case of pure density fluctuations) 
yields lengthy and rather complex expressions for the 
scattered amplitudes. Therefore his results are prac- 
tically applicable only for sinusoidal type modulations. 
In this paper a theoretical approach is given by which 
modulations also other than sinusoidal can be des- 
cribed to yield simple analytical expressions for the 
amplitude of coherently scattered X-rays. The intent 
is to give simple and exact solutions for cases of 
modulation functions where by the conventional 
method only very complex analytical expressions are 
obtained. As an example, lattices modulated by a tri- 
angular or a rectangular wave (transverse mode) will 
be discussed and rules will be given to interpret the 
scattering patterns. 

Theoretical  

The total (complex) amptitude of X-rays which are dif- 
fracted from a periodic structure, as shown in Fig. l(b). 
is given by: 

J 

A = ~ exp [2"i(~u +r/v + ~w)] ~ A  exp [2"i(r.. r*)]. 
U,O,W .=I 

(1) 
(u, v, w) and (~, r/, ~) represent vectors of the lattice and 
the reciprocal lattice, respectively: 

r* = Ca* + r/b* + ~c* 

ruow = ua + vb + wc .  

The sum over all a tomsj  within the cell is the structure 
factor F of a unit cell; the sum over u (or v, or w) is 

known to be the Laue function G(~)" 
N I - - 1  

G(~) = ~ exp (2ni~u) 
U = 0  

(2) 

G(~)=exp [hi(N1- 1)~ ~] sin nNl~ 
sin n~ (3) 

If the number of unit cells N~ is large enough, it is safe 
to set 

G ( 0 = {  N~ for ~---h (h=0, + 1, + 2 . . . )  
0 otherwise. - (4) 

Therefore the total amplitude A is proportional to the 
structure factor F: 

A= N~N2NaF. (5) 

This is the well known equation on which the structure 
determination by diffraction methods is based. 

The modulated lattice of Fig. l(a) arises from the 
idealized lattice of Fig. l(b) by substituting r~vw for 
ruvw: 

r[,~w=r,~w+g(u,v,w) . (6) 

The discussion in this paper will be restricted to 
problems where the vector g depends only on u and 
where g is parallel to b: 

g =  b g(u). (7) 

If applied to the problem of Fig. l(a) equation (1) 
takes the following form: 

NI--I 

A = G(r/)G(OF ~ exp 2ni[~u + r/g(u)]. (8) 
U--0 

This can be broken up into two sums by the following 
substitution 

u=qM+s (9) 
with 

q=0,1 ,2 . . . [N1/M] 
s = 0 , 1 , 2 . . . M - I ,  

M=per iod  of the modulation function in units of 
subcells. 

[N~/(M)] is the largest integer of which the magni- 
tude does not exceed the magnitude of N~/M. Since 
g(u) is a periodic function, the following relation must 
hold 

g(u)=g(qM+s)=g(s) . 

With this relation for g(u), equation (8) can be written 

[ N 1 / M ]  --  1 

A=G(r/IG(OF ~ exp(2ni~qM) 
q = 0  

M - 1  

× ~ exp {2ni[~s+r/g(s)]}+e. (10) 
S = 0  

e is a correction term if N1 is not an integral multiple 
of M. e is negligibly small if the magnitude of [N~/M] 
is large enough. The first sum is a summation over all 
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unit cells (superstructure), the index of the second sum 
refers to the subcells. 

If the approximation for the Laue function given 
by equation (4) is accounted for, we obtain 

1 
A(P/M,k, 1)=N~N2N3F M 

M--Z p 
exp {2ni [ -~  s+k. g(s)l} 

s=O 

with p=O, 1,2 . . . .  (11) 

The total amplitude A can be normalized to the struc- 
ture factor of the idealized structure which is given by 
equation (5). This leads to the basic equation which 
describes the satellite problem for modulated struc- 
tures of the type shown in Fig. l(a) and for any kind 
of modulation function which is defined for 0 < s < M: 

l M - - 1  p 

A(P/M,k, 1)= --M ~ exp {2hi[ s+k.g(s)]}. (12) 
s = O  

.4 is the normalized geometrical structure factor of the 
unit cell (superstructure). 

Apparently, scattered X-ray intensity is to be ex- 
pected only at positions ~= 1/M,2/M,3/M... and k, 1 
integers. These are the positions of the satellite re- 
flexions; except for ~=h(i.e. P=M,2M,...). The 
latter are the positions of the main reflexions. The 
approach given here is different from the ones used by 
other authors. The basic difference is that equation 
(8) is split into two sums, which leads to equation (I0). 
This approach is therefore only exact in cases where 
the period M is a multiple integer of subcells, a con- 
dition which is experimentally found in many super- 
structures. The results which can be derived from 
equation (12) are exact in the sense that the Laue ap- 
proximation can be accepted as being valid in the 
kinematic theory. Because of this approximation the 
number M is limited. If N1 is of the order of 104 for 
crystals of standard quality, M is restricted between 2 
and, say, 50. These, however, are the most relevant 
cases for application. 

R e c t a n g u l a r  w a v e  

Two examples will be given, for which equation (12) 
will be evaluated. The first one is a lattice modulated 
by a rectangular wave. This type of modulation may 
be conceived for structures with domain-like anti- 
parallel shifts of atomic positions. The period of the 
modulation has to be much below the range of co- 
herence. In some antiferroelectrics such microdomains 
may be expected in which the antiparallel shifts of 
atoms give rise to the antiparallel orientation of the 
dielectric polarization vector. An asymmetric struc- 
ture of rectangular modulation is shown in Fig. 2. 
The width of the domains is D1 and M-Dt. The 

function g(s) can be defined by" 

g(s) ={  b O<s<D1 
-b  Dx <s<M. 

(]3) 

Substitution of equation (13) into equation (12) will 
give 

DI--I 

A = I / M [  ~ exp{2ni(P/Ms+kb)} 
s = O  

M - - 1  

+ ~ exp {2ni(P/Ms-kb)}]. (14) 
S=D 1 

b I 

1, 

2 

lII t 

Fig. 2. Lattice modulated by a rectangular modulation func- 
tion and the corresponding diffraction pattern (for b = 0.125, 
Dt = 3, M= 8). The value of b is exaggerated in the drawing. 
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Fig. 3. Lattice modulated by a symmetric rectangular modula- 
tion function and the corresponding diffraction pattern (for 
b=0.125). The value of b is exaggerated in the drawing. 
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This can be simplified by the use of the trigonometric 
identities to yield the magnitudes of the amplitudes of 
the main reflexions and of the satellites: 

IAI-- {1 + 4 D ~ / M ( D 1 / M -  1) sin 2 (2nkb)} x/2 (15a) 

for main reflexions, 

1 2 sin (2nkb) sin (nnOl/M) IAI m sin (nn/M) [ (15b) 

for satellites; n = l, 2, 3 , . . . .  
The index P in equation (14) counts the reflexions 

in the a* direction. It has been substituted by 

P = M h + n  

h = integer; - M/2 < n <_ M / 2 .  (16) 

n refers to the order of satellites between two main 
reflexions. 

Two features can be derived from equation (15): 
(1) All satellites have a zero at k0= 1/(2b). For this 

value of k the structure factor becomes zero. By 
finding the zeros of the satellites b can be determined. 
If b is known, the zero of the main reflexions [equation 
(15a)] can be used to determine 21,/1. 

(2) If M/Dt  = q (q integer), systematic extinctions are 
found for the satellites: all satellites are extinct with 
n = q m ; m =  l, 2,3, . . .. 

One special case of g(s) will be discussed further: 
the case where g(s) is a symmetric function: D1 = M/2. 
An example for M = 8  is shown in Fig. 3. For this 
symmetric case equations (15a) and (15b) can be re- 
duced to yield the simple result: 

2 
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I 

Fig. 4. Lattice modulated by a triangular modulation function 
and the corresponding diffraction pattern (for b=0.125, DI 
=3, D2=5). The value of b is exaggerated in the drawing. 

[AI = Icos (2nkb)l (main reflexions) (17a) 

IAI = 2/MI sin (2nkb) 
sin (nn/M)-[ n =  1, 3 , 5 , . . . .  (17b) 

All satellites of even order are extinct• The main re- 
flexions, if normalized to the amplitude of the idealized 
structure, vary with k like a simple cosine function. 
The diffraction pattern as described by equations (17) 
is illustrated in Fig. 3 for the case of M = 8 .  Some 
characteristic features should be pointed out: 

(1) If the modulation is along a, the satellites are 
observed along a*. 

(2) For a transverse modulation with an amplitude 
parallel to b. the intensity depends only upon k. There 
are no satellites for k = 0. 
These features are common to all transverse modula- 
tions, as was pointed out by Korekawa (1967). 

(3) Looking along b* there is a zero for all satellites 
midway between two zeros of the main reflexions, and 
vice versa• The main reflexions arrive at a maximum 
(IA] = 1) when the satellites disappear. By finding the 
zeros of the satellites and/or the main reflexions on 
X-ray photographs the amplitude b can be determined. 

In order for an X-ray photograph to be analysed, 
however, the intensities (or the amplitudes) have to be 
normalized to the intensities of the idealized structure. 
This can easily be done by the following relation: 

M / 2  n 

IA h+ ,k , I  2__~,nr21~ ,nr22~ ,nr2s F 2 
n = --  M / 2  - M -  n = --  M / 2  

n )l z × 1.4 h + - - M , k , t  . (18) 

From the identity 

4 M/z-I 1 
M2 ~ = 1 (19) 

(2p+1) p=0 sin 2 

and with F2= 1 for the structure of Fig. 2 it follows 
readily from equation (17) that 

) _z 
n =  ] 

Equations (18) and (20) simply establish that the am- 
plitude of the idealized structure may be obtained by 
adding all the satellite intensities from n - - - M / 2  to 
n = M / 2  to the intensity of the corresponding main 
reflexion and by taking the square root. This also 
holds for transverse modulations other than the 
square-wave type. If a satellite is exactly midway 
between two main reflexions its intensity has to be 
shared by them. 

Triangular modulation 

A specific type of twinning may be described by a 
lattice modulated by a triangular wave. The twin 

A C 3 1 A - 7  
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lamellae must be much smaller than the range of 
coherence. This kind of lattice modulation will be 
discussed as a second example for the approach given 
by equation (12). The structure is shown in Fig. 4. 

For the case shown in Fig. 4 the modulation function 
can be written in the form 

{ al(s-½) O<s<(Dx+l)/2 
g(s)= a2(M/2+½-s) (DI+ 1)/2<s<M-(DI-1)/2. 

(22) 

D1 and Dz are the widths of the two domains. After 
substitution of equation (22) into equation (12) a 
solution for 1.41 can be obtained for any integer DI and 
D2 (or M respectively): 

IA[-- I sinzc(a~+a2)ksinzcDl(n/M+atk) I (23) 
M sin rc(n/M+alk) sin rc(n/M-a2k) " 

The four parameters in equation (23) are not inde- 
pendent; the following relation must hold: 

a l D l = a 2 ( M - O l ) = a z O 2 = b / 2  ; (24) 

b=  amplitude of the modulation. 
The diffraction pattern for the case D~=3, D2=5 

and b=0.12 is shown in Fig. 4. The characteristic 
features which are pointed out in the previous section 
and which are common to all transverse waves are 
also found here. The parameters of equation (23) can 
be determined by fitting the observed data to the exact 
solution given by equation (23). The zeros of the main 
reflexions can be used for this purpose. For example, 
the first and second zeros are given by the two relations: 

k0= 1/(atD~) (25a) 
and 

k0= 1/(a~ + a2). (25b) 

Since M is known from the diffraction pattern, a~, a2, 
and D~ can be determined too with equations (25) and 
(24). The satellites are not symmetrical about the main 
reflexions; this is different from sinusoidal and rec- 
tangular modulations. At k0 given by equation (25b) the 
main reflexions and all but one satellite disappear. The 
order of the only satellite present is given by 

n = M[1 - a~/(a~ + a2)]. (26) 

This is a specific feature of triangular modulations: at 
a certain k value the structure factors of all but one 
satellite vanish; if this k0 is an integer only one sa- 
tellite is observed, its order being given by equation 
(26), (in Fig. 4, k0 = 7). The normalized amplitude can 
be obtained as in the case of rectangular modulation. 
In this case an identity different from equation (19) 
has to be applied to prove that equation (20) is valid 
also for triangular modulation. 

Comparison 

The results given above for rectangular and triangular 
modulations will be compared with those given by 
Korekawa (1967) for a sinusoidal modulation. His 

result for the amplitude is" 
o o  

IX(h+n/M,k,l)l=l ~ J~M_V,,(2nkb)l; 
q=  - - oo  

arm = Bessel function of order m 

b = amplitude of the sine wave. 

(27) 
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Fig. 5. Lattice modulated by a sinusoidal modulation function 
and the corresponding diffraction pattern. The amplitude 
is 0.125, which is exaggerated in the drawing. 

M )a 

_/[ 0 2 h 
0 ;  i 

! 

2 

3 - e - 

4 

k 

Fig. 6. Lattice with M=4, which can be described by both 
a triangular or sinusoidal modulation function, and the 
corresponding diffraction pattern. 
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The structure and the corresponding scattering pattern 
are shown in Fig. 5. For small arguments of the Bessel 
function the series of equation (27) can be approxima- 
ted by just the term with q = 0. Thus, the satellite of the 
nth order is represented by the Bessel function of 
order n. In this case equation (27) simplifies to 

IA(h + n/M,k,l)l=lJ,,(2zckb)l . (28) 

Consequently, the main reflexions are described by 
Jo(2zckb). The validity of this approximation will be 
checked by an example for M = 4 ,  which is shown in 
Fig. 5. Apparently this lattice can be exactly described 
by both a sinusoidal and a symmetric triangular type 

Ixl 

modulation; therefore the results must be identical 
for both kinds of modulation. By replacing M by 4 in 
equations (23) we obtain (for al = a2, DI = 2) 

I~/I = cos 2 rckb n = 0 (29a) 

Ih-I = sin 2 zrkb n = 2 (29b) 

IAI =½l sin 2zrkb] n =  1 ; (29c) 

b = amplitude of the triangle or the sine wave. 
The diffraction pattern is shown in Fig. 6. Equation 
(27) with M = 4  yields 

o o  

IAI =1 ~ &q~,,(2zckb)l. (30) 

1.0 

(l 

0 . 5  ¸ 

0 1 2 3 /, 5 6 7 8 9 ~-k 

Fig. 7. (a) k dependence of the normalized amplitude of the 
main reflexion for the example of Fig. 6, and (b) the Bessel 
function J0(2zrk x 0.125). 

Ixl 
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Fig. 8. k dependence of 1,41 of the main reflexion for (a) a 
rectangular, (b) a sinusoidal and (c) a triangular modulation 
function for the symmetric case of M=8 and b=0.125. 

1.0 t 

Q.. . . . .~ '" ' . . .  . . . . ."" ' . . . . .°  
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: ,~ ~, ..: . 

0 I 2 3 4 5 6 7 8 9 k 

Fig. 9. k dependence of ]`4] of the first satellite for (a) a 
rectangular, (b) a sinusoida] and (c) a triangular modulation 
function for the symmetric case of M =  8 and b = 0.125. 

By application of the relations between Bessel func- 
tions and trigonometric functions the equivalence of 
equation (30) and equation (29) (for the proper n) can 
readily be established. Fig. 7 illustrates the variation 
of the main reflexion with k as given by equation 
(29a); it also shows the Bessel function Jo(2zckb), which 
is an approximation for the k dependence of the main 
reflexion according to equation (28). It is apparent 
that this approximation only holds for k_< 2 (for b =  
0.12). 

If for determination of b tile root of equation (28) 
had been used instead of the one of equation (29a) the 
value of b would have been found to be b =0.092. The 
correct value is b=0.12.  A second example will be 
given to compare the variation of the main reflexion 
and the first satellite for the three basic types of sym- 
metric transverse modulations; sinusoidal, triangular, 
rectangular. The period M is eight and the amplitude 
is the same (b=0.12) in all three cases. The dependence 
upon k is shown in Figs. 8 and 9 for the main re- 
flexion and the first satellite. Apparently there is a 
considerable difference in this dependence. For the 
rectangular wave the maximum intensity (IA[ = 1) is 
attained periodically by the main reflexions [at k = 0 ,  
1/(2b),2/(2b)...]. For these values of k all satellites 
vanish. For the sinusoidal wave there is only the 
absolute maximum at k = 0 ;  there is no value of k, 
other than k = 0 ,  where all satellites become zero. In 
the case of a triangular modulation the absolute 
maxima (at k = 0 ,  1/a, 2 /a , . . . )  are followed by relative 
maxima in between. All satellites disappear only at k 
values k=O, 1/a ,2/a . . . ,  the main reflexions and all 
but one satellite disappear at k = 1/(2a). 

If on an X-ray photograph the main reflexions ar- 
rive at the maximum intensity (IAI = 1) periodically, a 
sinusoidal modulation can be excluded. The rectan- 
gular wave is characterized by the fact that all maxima 
of main reflexions are absolute maxima. This shows 
that the intensities differ considerably for the three 
cases and so do the roots of the functions describing 
the k dependence. 

When an X-ray pattern is analysed, it is therefore 
imperative to plot the measured intensity and to 

A C 3 1 A  - 7 *  
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decide which one, if any, of the three fundamental 
modulations is applicable, before any parameter can 
be determined from the zeros of the main reflexions 
and the satellites. 

This paper only deals with positional fluctuations 
of the transverse type. The rules given here are there- 
fore only applicable if the features characteristic for 
this type of modulation are observed. However, if the 
structure is affected by density fluctuations or positio- 
nal fluctuations of the longitudinal type different 
criteria have to be applied. 

The author wishes to acknowledge the valuable 
discussions and helpful suggestions of Professor Dr 
W. Hoffmann and Dr J. L6ns. 
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A Probable Crystallographic Path for the Thermal Phase 
Transitions in Single Crystals of KNO3 

BY S. SWAMINATHAN AND S. SRINIVASAN 

Physics Department, LLT.,  Madras 600036, India 

(Received 21 March 1974; accepted 21 April 1975) 

A probable crystallographic path for the thermal cycle of phase transformations, II-I-III-II, in KNO3 
single crystals is proposed. It is based on the symmetry of the phases and a least-motion hypothesis 
that the 'shuffles' of the transformations (so remarkably like martensitic transformations in metals) are 
the minimum possible readjustments subject to accepted van der Waal distances between chemically 
non-bonded atoms. Twinning is adequately explained by the alternative paths provided by the symmetry 
of the parent phase. The observed disorientation of 209 ' in the c(II) axes of the end-phase twinned 
crystals is calculable by the well known Bowles-Mackenzie matrix method. The calculated value is 
now found to be 2"5 °. Crystallographically an important possibility emerges: the structure of the higher- 
symmetry phase of a transformation may be predicted from only its unit-cell dimensions and space 
group if the crystal structure of the low-symmetry phase is known. 

Introduction 

Martensitic transformations in metals and alloys are 
characterized by well-defined orientation relationships 
between the parent and product phases. This character- 
istic is found in phase transformations of crystals of 
some non-metallic compounds also. For example, 
calcium carbonate transforms from room-temperature 
orthorhombic aragonite to rhombohedral calcite at 
478 °C. The twofold c axis of aragonite becomes the 
unique axis of calcite (Shoji, 1933). 

It has been shown that the reverse transformation, 
calcite to aragonite, is brought about by shear pro- 
cesses that occur only during crushing and grinding but 
not by uniform pressure (Leiserowitz, Schmidt & 
Shamgar, 1962). Shear is also a specific characteristic 
of martensitic transformations. 

At room temperatures phase II KNO3 crystals are 
isomorphous with aragonite, space group Preen (No. 

162, International Tables for X-ray Crystallography, 
1952). On heating they transform at 128°C to the 
rhombohedral phase I, space group R3m (No. 166). 
This space group is very close to R3e (No. 167) of 
calcite. X-ray oscillation photographs show that in 
KNO3 also the c axis of phase II transforms into the 
unique axis cH of phase I. 

On cooling, phase I KNOs returns to phase II not 
directly but through another rhombohedral phase III 
of the noncentrosymmetric space group R3m (No. 
160). The transformation sets in at 125°C, and phase 
III persists till 110°C. 

The crystal structures of all three phases have been 
determined (Tahvonen, 1949; Edwards, 1931; Barth, 
1939). Their crystallographic data are in Table l;  the 
three structures in their respective (001) projections are 
shown in Figs. 1 and 2. 

Such closely related symmetry, the similar orienta- 
tion relationships and the fact that in one of them 


